Since the CheXNet paper came out in November 2017 I have been communicating with the author team. I'm finally ready to review the paper. Some of the things I found out surprised me.
Tag: research
Exploring the ChestXray14 dataset: problems
A couple of weeks ago, I mentioned I had some concerns about the ChestXray14 dataset. I said I would come back when I had more info, and since then I have been digging into the data. I've talked with Dr Summers via email a few times as well. Unfortunately, this exploration has only increased my concerns about the dataset.
Do machines actually beat doctors? ROC curves and performance metrics
Deep learning research in medicine is a bit like the Wild West at the moment; sometimes you find gold, sometimes a giant steampunk spider-bot causes a ruckus. This has derailed my series on whether AI will be replacing doctors soon, as I have felt the need to focus a bit more on how to assess … Continue reading Do machines actually beat doctors? ROC curves and performance metrics
The End of Human Doctors – The Bleeding Edge of Medical AI Research (Part 3)
Today I want to look at two papers which tell us something very useful about medical AI, particularly if we are trying to predict the future of medicine.
Interested in radiology or research?
Just a quick note: If you are in South Australia and you are interested in radiology or research, or even radiology research, feel free to contact me. I can answer any questions you have or maybe even connect you with researchers who need help. And if anyone is willing to give me feedback on my teaching materials, … Continue reading Interested in radiology or research?
First steps as a clinician researcher
Welcome to the first post of my blog! It feels a bit self-indulgent, but documenting my path into academia might help others who may find themselves in the same situation I was a bit over two years ago: a medical doctor who has never considered a career in research. To explain that, a bit about how … Continue reading First steps as a clinician researcher



